Phase-noise homograph eases
power/bandwidth tradeoff

by R. S. Baggett

Rockwell International Corp., Collins Satellite Group, Richardson, Texas

The residual noise generated by a frequency- or phase-
modulated system limits the amount of information that
can be passed through a satellite communications
network. But determining what tradeoffs to make in
noise power versus bandwidth versus frequency can be
tedious for those who must solve the defining equations
repetitively. The nomograph shown is a quick way to
relate the residual noise, also known as phase noise, to its
equivalent noise power for a specified system bandwidth
and frequency offset from the carrier.

More exactly, this nomograph converts phase noise in
a l-hertz bandwidth, which is measured in decibels
below the carrier power (dBc/hertz), to decibels below a
carrier that is undergoing a deviation of 200 kilohertz in
a channel having a bandwidth of 3.1 kHz, The carrier
deviation and channel bandwidth are industry standards.

The noise bandwidth, the frequency at which the
measurement is taken (offset from the carrier), and the
phase noise are related by:

dBc/Hz = 20 log (Af,/2V2f,,) (1)

where f, is the root-mean-square deviation of noise in
hertz and f, is the measurement frequency in hertz.

Noise power in a bandwidth other than 1 hertz can be
found with the aid of:

Afz = (BWz)“zAfl (2)

where BW, is the actual bandwidth and Af, is the new
bandwidth of the noise.
When Equations 1 and 2 are combined, the result is:

Afz — (2BW2)1/2fm10(dBc/Hz)/20 (3)

When Af; is related to the 200-kHz reference deviation
by:

dBm0 = 20 log (Af»/200,000) (4)

where dBmoO is defined as the equivalent noise power,
and when BW, is made equal to 1.3 kHz and Eq. 3 is
combined with Eq. 4:

dsm0 = —68.10 + 20 log fn+dBc/Hz 5)

Equation 5 is plotted on the nomograph using lines of
constant dBm0.

Use of the nomograph aids the designer in converting
from a given dB./Hz value to its dBmO. For example, a
noise at 15 Hz in a standard 3.1-kHz-bandwidth system
has a measured (and calculated) dB,uz of —91.3 when
fm = 7 kHz. As shown on the sample plot on the
nomograph, —91.3 is equivalent to a dBm0 of —82.5. As
a check, Eq. 3 is used:

20 log(15/200,000) = —82.5dBm0 a

Engineer's notebook is a regular feature in Electronics. We invite readers to submit original
design shortcuts, calculation aids, measurement and test techniques, and other ideas for
saving engineéring time or cost. We'll pay $50 for each item published.
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Signal to noise. Nomograph relates phase noise to demodulated power for channel bandwidth of 3.1 kilohertz. in example, noise at 15 Hz
produces phase noise of —91.3 dBc/Hz 7 kHz from carrier, generating an equivalent noise power of —82.5 dBm0.
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PARALLEL-LINE
DANCGE
NUMOGRAM

- IMPE

By JIM KYLE

Here is a simple-to-use design chart that can be employed

by ndustrial technicians, amateur radio operators, and

engineers who must construct impedance-matching stubs.

INDUSTRIAL technicians, ham oper-
ators, and electronics engineers
frequently find it necessary to determine
the impedance of a parallel-wire r.f.
transmission line, especially in the con-
struction of impedance-matching trans-
formers or of u.h.f. resonant circuits.

While this impedance can easily be
calculated by a simple equation, the
equation requires that vou know the
value of a logarithm—and log tables
aren’t standard equipment on most
benches.

The accompanying nomogram will
provide the answer for any air-dielectric
parallel-wire line having conductors be-
tween .05 inch and 1 inch in diameter,
spaced from one inch to 20 inches
center-to-center. In addition, it allows
you to pick the spacing necessary to
build a line of any specified impedance,
or to choose conductor diameter.

To use the chart, simply draw a
straight line through the two known
quantities and read the third quantity
at the point where the line intersects its
scale.

Example of Use

For example, suppose we have an
air-dielectric parallel-wire line made up
of Y-inch tubing spaced 2% inches center-
to-center. Drawing a line from 2% inches
on the “spacing” scale to 4% inch on the
“diameter” scale, we find that it crosses
the “Z.” scale just below the 360 grada-
tion. The impedance, then, of the line is
approximately 359 ohms.

Had we been planning te build a 359-
ohm line section, possibly for use as
an impedance-matching transformer,
using J-inch tubing, we would have
drawn the same line—but this time we
would read the center-to-center spacing
as 2% inches, from the appropriate
scale.

February, 1962
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Versatile Voltage, Power,
and Decibel Nomograms

By JIM KYLE

Two useful charts that enable the audio technician
to find amplifier gains and losses even when voltage
measurements are taken across different impedances.
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Ci ALCULATIONS of power levels and decibel ratios from
" voltage readings often lead to confusion for both expe-
rienced technicians and beginners, since the conventional
formula for determining decibel ratio from voltage readings
assumes that each reading is taken at the same impedance
level. )

Many charts, tables, and graphs have been published to aid
in soiving such problems. However, the charts shown here offer
features not to be found in such previous aids. With them,
power corresponding to any voltage reading can be determined
if resistance is known, voltage can be determined if power is
known, and the gain or loss in decibels of any equipment can
be determined if input and output voltages and resistance can
be measured.

T SRR T ST T R v
|

calculations. Chart 2 (right) converts power levels directly to
decibels gain or loss.

The voltage and resistance scales of Chart 1 bear two sets
of graduations, labeled E1 and R1 and E2 and R2 respectively.
Scales bearing the same suffix number are used together.

For example, suppose an amplifier is under test. A 10-volt
signal applied to the 500-ohm input produces an output meas-
ured at 5 volts across 8 ohms.

First, determine input power from Chart 1. The line connect-
ing 10 volts (E2 scale) and 500 ohms (R2 scale) passes through
0.2 watt. Output power is next. This time, the E1 and R1 scales
of Chart 1 are used, yielding an answer of 3.1 watts.

Now we turn to Chart 2. Connecting the 3.1-watt output (P1
scale) and the 0.2-watt input (P2 scale) gives a total amplifier

Chart 1 (at the left) is used for voltage-power-resistance gain of just under 12 decibels. A
Pl 08 P2
"—__—'IOOO —]:—+40 —1r—0.|
— ——
4 700 i
e —— +35
<+ 500 :: /7‘ 0.2
4+ 400 = 5 ’,/’
4 300 ____'__!,30 ’,’ -+ 03
+ 7 -+ 04
4 200 2 -~ + o5
—F—+25 7 b
iR e 4 o7
—— i =l 59
e // e
—— 100 —— +20 e ——t
n o Sl -
= e = //
—4 70 -+ L
1 T 5.
—+ 850 [ et - 2
-+ 40 -./
o
~ —
s L et =
e o <4 4
20 -7 ¥ 5
edat P 5 A b
rd g
- 1 +5 4,
- -+ 4+ 7
- + i
o 7 —+o —+—1w0
- ey I
-+ 7 //// ks
—— /// ___5
- 5 (// :: -+ 20
ol 4',’ M
rd e
2 o i
ote -+ 40
o+ 2 i -+ 50
— -5 +
AN
A -+ 70
S i PV T 00
£ 07 +
+ os b S + 200
~+ 04 -+
ot et -+ 300
-+ 03 b =
ol S < 400
4 0.2 I T 500
—— -35 3
i -+ 700
—L o I -40 —T 1000

}
fl




By A. L. TEUBNER

A triangular connection of resistors (delta or pi)
must be converted into a Y or T network in order to
apply Ohm’s law to the solution of resistive bridge
networks. This chart solves the problem graphically.

.  ANY times a resistive circuit cannot be analyzed by
‘ %/ | the old standby rules for series and parallel resist-

ances, because it contains a triangle of resistors
called a delta or pi network, depending on how it is drawn.
A familiar example of this is the so-called bridge circuit
shown in Fig. 1 (top left). As the diagram shows, if the delta
is transformed to a “Y” (or a pi to a “T"), the resistance be-
tween the two external terminals can be found.

This nomogram is designed to make the conversion. The
formula on which it is based and which is shown on the
chart, can be stated in words as follows: The impedance
connected to any terminal of the T-network equals the
product of the two impedances connected to that terminal
in the pi-network, divided by the sum of the three pi im-
pedances.

An example problem is solved on the nomogram to dem-
onstrate its use. The three resistors in the pi circuit are 4,8,
and 10 ohms. On the left side of the chart, a line is drawn
between 6 ohms on the scale labeled “Z.” and 10 ohms on the
“Zi” scale, and continued until it cuts the uncalibrated turn-
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Fig. 1. Example of delta-Y transformation discussed in text.

ing line in the center of the nomogram. A second line con-
nects this intersection with 20 ohms on the “S” scale, the
sum of the three pi-network resistors. This second line crosses
the “Z.” scale at the 3-ohm graduation. Thus, the terminal
which had the 6- and 10-ohm resistors of the pi-network con-
nected to it requires a 3-ohm resistor for the equivalent
T-network. The same process is repeated for the other two
terminals, giving 1.2 ohms and 2 ohms, as shown,

Several additional details should be pointed out. First,
the “Z.” and “Z;” scales are interchangeable. In the solution
described, the 10 ohms could have been on the “Zs” scale
and the 6 ohms on the “Z.”. Second, to solve problems with
larger resistors, multiplv all scales by the same power of ten.
Third, the reverse problem, T to pi, can be solved by the
same process if all impedances are first converted to admit-
tances, where Y: equals 1/Z:.. The values found are, of course,

admittances, and must be reconverted. A
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TOLERANCE CALCULATOR

seful chart that can be employed to determine plus and minus
ralues of a number within the tolerance limits of +100% to —75%.

i ANY times during circuit testing and troubleshoot- Value” scale and go across to the = % tolerance line desired.
_1 ing it is necessary to compute the tolerance of a Drop down to the “Tolerance Value” scale and read the =

= component or parameter to determine if it is with- tolerance value. Thus the number 60 *20% has tolerance
in Hmits. Specified, usually, as a per-cent of a nominal value, limits of 48 and 72; this can apply to 6000 ohms, 600 kc.,
these calculations require the use of a slide rule or pencil 0.6 mhy., $6.00, or just about any type of parameter or com-
and paper, in addition to taking up valuable servicing time. ponent value you may come across.

This tolerance calculator can minimize the time required Don’t worry about the decimal point: if vou start out in
for calculations giving the plus and minus values of a num- kilohms, vour answer will be in kilohms; if vou start out in
ber within the tolerance limits of +100% to  73%. ut., vour results will be in uf. (or their fractional parts).

Mounted on the wall near your bench, this calculator will
alwavs be ready to give vou those tolerance values you re-
To use the caleulator, find the number on the "Nominal quire to help speed that servicing job. A

Using the Graph
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Useful nomogram for technicians,
experimenters, and servicemen

simplifies parallel-R, series-C problems.

By JIM KYLE

PARALLEL-RESISTOR CHART

ECHNICIANS, experimenters, and
Tservicemen often find it necessary to

determine the resistance of two or | Rl
more resistors in parallel. While this T
can be done by using the classic sum-of-
the-reciprocals formula: 1/R; = 1/R,
+1/Ra4 oo + 1/R., the arith-
metic involved frequently becomes cum-
bersome. :

The more widely used formula B, =
(R, X R.)/(R\ + R.) suffers the same
drawback, when applied to standard re-
sistance values, as anyone who has tried
multiplying 39 by 18 and dividing the
product by 57 knows.

This chart was designed to give a -+ 4
rapid answer to such calculations. In
addition, it can be used to determine the L
value resistor which must be added in + T .
parallel with an existing component to
reduce the total resistance to a specified
amount—a procedure which becomes 1T 1T
complex when standard formulas are
employed. + 4 +

Using the Chart

To use the chart, draw a straight line 4{_ -
from the value of R1 to the value of R2. T .
This line will cross the R, scale at the -
value of total resistance. Note that all Pl
values have been normalized to the 2—]
range from 1 to 10 to make the chart 4 - s
universal. You can multiply or divide 1 -
the values given by 10, 100, 1000, etc. as i -
needed. J -

For example, the total resistance ob- [‘_ 1
tained by paralleling a 39-ohm resistor
with an 18-ohm resistor is 12.3 ohms, as
shown by the dashed line on the nomo-
gram. 3

If you want to find out what size re- - <4
sistor to use to reduce an existing resis- | Prad t
tor's value to some specified amount, T - 1
draw a line from the existing value on p
R1 through the desired final value on
the Rt scale and read the value of the
resistor that is to be added from the 5
R2 scale.

In addition to its uses with parallel
resistors, the chart can be used without
change to determine series-capacitor
problems, since the same formulas ap-
ply. Simply replace the-“R” symbols
mentally with “C"” and proceed as de-
seribed above. A
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parallel
resistance
talculator

By M. A, HAMMOND

A choice of the possible
pairings that make up the
value desired can be read
off without calculation.

NYONE who needs to make up a
A resistance value from what is
L on hand will find this chart use-
ful. Series pairs can be worked out with
mental arithmetic. Parallel pairs, espe-
cially when a choice of possibilities is
wanted, involve time-consuming calcu-
lation. The chart quickly reveals the
range of pairings, in EIA values, that
equal or approximate the desired resist-
ance.

Starting with the needed value on the
right-hand scale, read horizontally to
the left until a point is reached where
two diagonals intersect. Following each
diagonal to its termination on the left
reveals the two resistors required. For
example, assume that 35 ohms is sought.
A pair of intersecting diagonals on the
35-ohm line lead to 51 and 110 ohms.

Precision requirements and tolerance
variations permit some flexibility in
matching pairs. Thus other points of in-
tersection close to the 35-ohm line yield
such additional pairings as 43 and 200;
43 and 180; 47 and 130; 56 and 91; and
62 and 82. The least accurate combina-
tion is within 3 per-cent.

For values higher than those shown.
add the necessary number of ciphers to
the significant figure on the right; then
add the same number of ciphers to each
figure read on the left. Thus 350 ohms is
obtained with 510 and 1100 ohms. How-
ever, only pairs in the same decade can
be read. For example, parallel resist-
ance for 330 and 330.000 ohms is not
given.

Other uses: the parallel value of two
known resistors is found by following
their respective diagonals from the left
until they intersect. It is also possible to
find the value of a shunt for a given re-
sistor to reduce it to a desired value:
trace the diagonal for the given value to
its intersection with the horizontal line
for the desired value. Then find another
diagonal that comes close to intersect-
ing this point.

The author originally published an-
other version of this calculator, based
on preferred-value resistors used in
England, in “Wireless World.” This ver-
sion has been adapted to EIA values and
expanded. A

April, 1962
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Engineer’s notebook

Nomograph shows bandwidth
for specified pulse shape

by Franc E. Noel and James S. Kolodzey
1BM Corp., Poughkeepsie, N.Y.

In a digital communications system, the bandwidth of
the transmission channel determines the sharpness of a
received pulse. For a communication channel where the
received pulses may be treated as gaussian wave shapes,
the system bandwidth required for a specified pulse
shape is:

F = (2/7T)[2 In(1/ P)]2

where, as in Fig. 2, T is the width of the time slot, P is
the normalized height of the gaussian pulse at the ends
of the time slot, and F is the 20 bandwidth of the chan-
nel, where o is the standard deviation of the pulse. The
bandwidth that is given by this expression contains
95.45% of the pulse power.

The choice of the 20 point is an arbitrary decision
based on the fact that the frequency spectrum of the
gaussian pulse is down 8.7 decibels at this point. There-
fore, a linear system with a bandpass flat to this point
provides a reasonable reproduction of the time-domain
pulse.

The bandwidth required to pass a particular pulse is

18- +—
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1. How wide the band? This nomograph shows the bandwidth F that contains over 95% of the energy in the spectrum of a gaussian pulse,
where the duration of the pulse is T and the normalized amplitude of its end points is P (as shown in Fig. 2).

102
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2, Pulse parameters. Time-domain representation of gaussian
pulse shows normalized amplitude P at edges of time slot T. A low
value for P gives low spillover into next slot, and therefore low error
rate, but requires large bandwidth in transmission system,

given by the nomograph in Fig. 1. The values of the
time slot, T, and normalized amplitude desired at the
ends, P, are connected with a straight edge to determine
the frequency axis crossover. For example, a time pulse
that is down to 1/€2, or 0.135, at the edges of a 12.5-
nanosecond time slot can be passed with a system band-
width of 102 megahertz. O

NORMALIZED AMPLITUDE
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